ANNEXURE - A

		SAHODAYA						
		_				MINATI		
		BL	UE PR	INT OF	QUEST	ION PAPE	R	
Sl No.	Chapters / units	Marks Allotted in Syllabus	LA (4 Nos.)	SA-II 06 Nos.)	SA-I (5Nos.)	MCQ (18Nos.) +AR(2Nos.) = 20(Nos.)	Case- Based (3 Nos.)	TOTAL (38 NOS.)
1	Relations and Functions	08	-	-	2(1)	1(2)	4(1)	04
2	Algebra	10	5(1)	-	-	1(5)	-	06
3	Calculus	35	5(2)	3(3)	2(2)	1(8)	4(1)	16
4	Vectors and Three - Dimensional Geometry	14	5(1)	3(1)	2(2)	1(2)	-	06
5	Linear Programming	05		3(1)	-	1(2)	-	03
6	Probability	08	-	3(1)	-	1(1)	4(1)	03
	MARKS	80	20	18	10	20	12	80

Subject: MathematicsClass: XIIFull Mark: 80Nos. of Questions: 38As per the syllabus the typology of question as follows:

$\mathbf{R} \rightarrow$ Remembering 15% of 80 marks: (12 MARKS)	1(6) + 3(2)	08
$\mathbf{U} \rightarrow$ Understanding 40% of 80 marks: (32 MARKS)	1(7)+2(3)+3(2)+5(1)+4(2)	15
A \rightarrow Application 25% of 80 marks: (20 MARKS)	1(1)+2(2)+3(2)+5(1)+4(1)	07
A \rightarrow Analysing 5% of 80 marks: (11.2 MARKS= 04)	1(4)	04
$E \rightarrow Evaluation 7.5\%$ of 80 marks: (12.8 MARKS = 06)	1(1) + 5(1)	02
C→Creativity 7.5% of 80 marks: (12.8 MARKS = 06)	1(1) + 5(1)	02

Total Number of Question

38

ANNEXURE -B

SAHODAYA

SAHODAYA PRE BOARD EXAMINATION- 2024-25 CLASS: XII, SUBJECT: MATHEMATICS (041) SET-1

QUESTIONWISE ANALYSIS

Sl No.	Chapters / units	Forms of Question - (LA , SA-II, SA-I, VSA)	Marks Allotted	(R), (U), (A), (C), (E)
1	Algebra	VSA	1	Remembering
2	Algebra	VSA	1	Understanding
3	Calculus	VSA	1	Understanding
4	Algebra	VSA	1	Understanding
5	Calculus	VSA	1	Analysing
6	Algebra	VSA	1	Analysing
7	Algebra	VSA	1	Remembering
8	Probability	VSA	1	Analysing
9	3D and Vector	VSA	1	Understanding
10	3D and Vector	VSA	1	Analysing
11	Calculus	VSA	1	Remembering
12	LPP	VSA	1	Understanding
13	Calculus	VSA	1	Understanding
14	Calculus	VSA	1	Application
15	Relation and function	VSA	1	Remembering
16	LPP	VSA	1	Remembering
17	Calculus	VSA	1	Remembering
18	Calculus	VSA	1	Evaluation
19	Calculus	VSA	1	Creativity
20	Relation and function	VSA	4	Understanding
21	Relation and function	SA-I	2	Understanding
22	Calculus	SA-1	2	Application
23	Calculus	SA-1	2	Understanding
24	3D and Vector	SA-1	2	Understanding
25	3D and Vector	SA-I	2	Application
26	Calculus	SA-II	3	Remembering

27	Calculus	SA-II	3	Remembering
28	3D and Vector	SA-II	3	Application
29	Calculus	SA-II	3	Application
30	LPP	SA-II	3	Understanding
31	Probability	SA-II	3	Understanding
32	Calculus	VSA	5	Application
33	Calculus	SA-I	5	Understanding
34	Algebra	SA-I	5	Evaluation
35	3D and Vector	SA-I	5	Creativity
36	Calculus	CASE-BASED	4	Application
37	Probability	CASE-BASED	4	Understanding
38	Relation and function	CASE-BASED	4	Understanding

AN	Ν	EΧ	U	RE	-C
----	---	----	---	----	----

SAHODAYA

SAHODAYA PRE BOARD EXAMINATION- 2024-25 CLASS: XII, SUBJECT: MATHEMATICS (041) SET-1

MARKING SCHEME

QST	Value Points	Marks
N NO	Value I Units	Allotted
11110	SECTION-A	
1	(D) $a_{ij} = a_{ji}, \forall i, j$	1
2	(D) none of these	1
3	(C) $1 < x < 3$	1
4	(D) ± 3	1
5	(A) 2	1
6	(D) 1	1
7	(D) -216	1
8	$(A)\frac{10}{9}$	1
9	(A) $1/\sqrt{3}$	1
10	$(C)\frac{\pi}{2}$	1
11	(C) $\frac{x^3}{3} - \frac{1}{x} + c$	1
12	(B) Open half plane not containing the origin	1
13	(B) 1/2	1
14	(A) $\frac{e^x}{x}$	1
15	(B) $y = cos^{-1}x$	1
16	(C) $x - y \ge 1$ (C) 3	1
17		1
18	$(B)\frac{8}{3}$	1
19	Both A and R are true and R is the correct explanation of A	1
20	(D) A is false but R is true	1
	SECTION-B	
21	$\cos^{-1}\left(\cos\frac{5\pi}{3}\right) + \sin^{-1}\left(\cos\frac{5\pi}{3}\right)$	
	$= \cos^{-1}\left(\cos\frac{\pi}{3}\right) + \sin^{-1}\left(\cos\frac{\pi}{3}\right)$	1
		1
22	$\frac{-\frac{\pi}{3} + \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{2}}{f(x) = x^3 + x}$	
	$f'(x) = 3x^2 + 1 > 0$	1
	\Rightarrow It has no critical points.	1
OR	Let v be the velocity of the car at t seconds. $x = t^2 \left(2 - \frac{t}{3}\right) = 2t^2 - \frac{t^3}{3}$	
	$\Rightarrow v = \frac{dx}{dt} = 4t - t^2 = t(4 - t)$	0.5
	When the car starts from P and reach Q at those point $v = 0$	0.5
	That is when $t = 0 \sec(at P)$ and when $t = 4\sec(at Q)$. So, reach Q after 4 seconds.	0.5
	Distance PQ = x (at t = 4) = $4^2 \left(2 - \frac{4}{3}\right) = \frac{32}{3}$ metres	0.5
23	Given $f(x) = (x - 1)e^x + 1$	

1	$\Rightarrow f'(x) = xe^x$	
	$x > 0 \text{ and } e^x > 0 \text{ for all } x$	0.5
	$\therefore f'(x) > 0$	0.5
	\Rightarrow <i>f</i> is increasing function.	0.5
24		
24	$\left \vec{a} + \vec{b} \right = \left \vec{a} \right \Longrightarrow \left \vec{a} + \vec{b} \right ^2 = \left \vec{a} \right ^2$	0.5
	$\Rightarrow \left \vec{a}\right ^2 + \left \vec{b}\right ^2 + 2\vec{a}.\vec{b} = \left \vec{a}\right ^2$	
		0.5
	$\Rightarrow \left \vec{b} \right ^2 + 2\vec{a}.\vec{b} = 0$	0.5
	$\Rightarrow (2\vec{a} + \vec{b}) \perp \vec{b}$	0.5
25	$\left \left(\vec{a}+2\vec{b}\right)\times\left(2\vec{a}-3\vec{b}\right)\right ^2$	
	$=\left 7(\vec{a}\times\vec{b})\right ^{2}$	0.5
	$= \left(7 \times 2 \times 3 \times \sin \frac{\pi}{4}\right)^3$	0.5
	$=$ $\frac{882}{100}$	0.5
OR	Horizontal component = $200 \cos 60^{\circ} = 100$ N	1
on	Vertical component = $200 \sin 60^{\circ} = 100\sqrt{3}$ N	1
	SECTION-C	
26	$\frac{dy}{dx} + \frac{2x}{(x^2 - 1)}y = \frac{1}{(x^2 - 1)^2}$	0.5
	$ \begin{aligned} & ax & (x^2 - 1) & (x^2 - 1)^2 \\ & IF = e^{\int p dx} = (x^2 - 1) \end{aligned} $	1
	$\therefore \text{ Solution is } y(x^2 - 1) = \int \frac{1}{(x^2 - 1)} dx$	
		0.5
	Hence $y(x^2 - 1) = \frac{1}{2} \log \left \frac{x - 1}{x + 1} \right + C$	1
27	$\frac{dA}{dt} = \frac{1}{6\sqrt{t}}$	1
	$\frac{d^2 A}{dt^2} = -\frac{1}{12t\sqrt{t}} < 0 \text{ for all } t \in [5, 18]$	1
	dt^2 $12t\sqrt{t}$ This means that the rate of change of the ability to understand spatial concepts	
	decreases (slows down) with age.	1
28	$\overrightarrow{a_1} = \hat{\imath} + \hat{\jmath}, \overrightarrow{a_2} = 2\hat{\imath} - \hat{\jmath} - \hat{k}, \overrightarrow{b_1} = 2\hat{\imath} - \hat{\jmath} + \hat{k} \overrightarrow{b_2} = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$	0.5
		0.5
	$\begin{vmatrix} \overrightarrow{a_2} - \overrightarrow{a_1} = \hat{\imath} - 2\hat{\jmath} - \hat{k}, \overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix} = -3\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$	0.5
	$S.D = \left \frac{(\overline{a_2} - \overline{a_1}).(\overline{b_1} \times \overline{b_2})}{ \overline{b_1} \times \overline{b_2} } \right \text{ units}$	1
	$=\frac{3}{\sqrt{29}}$ units	1
OR	At the point of intersection	
	$(-2\hat{\imath}+3\hat{j}+5\hat{k}) + \lambda(9\hat{\imath}-3\hat{j}-6\hat{k}) = (-3\hat{\imath}-2\hat{j}-5\hat{k}) + \mu(6\hat{\imath}+6\hat{j}+12\hat{k})$	1
	$\Rightarrow -2 + 9 \lambda = -3 + 6\mu, 3 - 3 \lambda = -2 + 6\mu, 5 - 6\lambda = -5 + 12\mu$	1
	$\Rightarrow \lambda = \frac{1}{3}$	1
	Putting it in equation of first line, we get point of intersection as $(1, 2, 3)$	

29	$\int \frac{x^2 + 9}{x^4 - 2x^2 + 81} dx$	
	$= \int \frac{1 + \frac{9}{x^2}}{x^2 - 2 + \frac{81}{x^2}} dx$	1
	$= \int \frac{1 + \frac{9}{x^2}}{\left(x - \frac{9}{x}\right)^2 + 18 - 2} dx$ $= \int \frac{dt}{t^2 + 16} = \frac{1}{4} \tan^{-1} \frac{t}{4} + c$	1
	$= \int \frac{1}{t^{2} + 16} = \frac{1}{4} \tan^{-1} \left(\frac{x^{2} - 9}{4x}\right) + c$ $= \frac{1}{4} \tan^{-1} \left(\frac{x^{2} - 9}{4x}\right) + c$	1
OR	$\int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^3 x \sqrt{2\sin 2x}}$	
	$=\int_{0}^{\frac{\pi}{4}} \frac{dx}{2\cos^4 x\sqrt{\tan x}}$	1
	$=\frac{1}{2}\int_{0}^{\frac{\pi}{4}}\frac{\sec^4 xdx}{\sqrt{\tan x}}$	1
	$=\frac{1}{2}\int_{0}^{1}\frac{1+t^{2}}{\sqrt{t}}dt = \frac{1}{2}\left[2t^{\frac{1}{2}} + \frac{2}{5}t^{\frac{5}{2}}\right]_{0}^{1} = \frac{6}{5}$	1
30	4. Corner Value of points $Z = x + \frac{2y}{2y}$ B(0, 25) 50(minim um) C(10,20) 50(minim um) P(25,50) 125 D(0,100) 200 At every point of segment joining B(0, 25) and C(10,20). Hence there are infinite number of solutions.	1.5
	number of solutions.	1
31	Let E_1 be the event that letter is from TATA NAGAR and E_2 be the event that letter is from CALCUTTA. Also, let E_3 be the event that on the letter, two consecutive letters TA are visible.	0.3

	If letter is from TATA visible are {TA, AT, If letter is from CALC visible are {CA, AL,	TA, AN, NA, AG, C CUTTA, we see that	GA, AR}, So P(the events of two	E_3/E_1) = 2/8 vo consecutive letters	to 1	
	So $P(E_1/E_3) = \frac{1}{P(E_1)}$					
OR	V 5		2		1 2	
OR	X 5 P(X) 1/3	4	3 4/27	-3 8/27	2	
	$E(X) = \sum XP(X) = R$				1	
		SECT	TION-D			
32	$y = x^{2+1} y = x^{-1} x^{-1$	$ \begin{array}{c} x \\ () \\ \hline \end{array} $			1	
	Point of intersection are (0,1) and (1,2) Area = Area of OABFO + Area of FECBF =					
	$= \int_0^1 (x^2 + 1)dx + \int_1^2 (x + 1)dx = \frac{4}{3} + \frac{5}{2} = \frac{23}{6}$ square unit					
33	$\frac{x = \sin\theta}{\frac{dx}{d\theta}} = \cos\theta \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}} = -ps$	inpθ			1	
	$\Rightarrow \frac{dy}{dx} = \frac{-psinp\theta}{\cos\theta} = \frac{-p\sqrt{1-y^2}}{\sqrt{1-x^2}}$ $\Rightarrow \left(\frac{dy}{dx}\right)^2 = \frac{p^2 \cdot (1-y^2)}{1-x^2}$					
	$\Rightarrow (1-x^2) \left(\frac{dy}{dx}\right)^2 = p^2(1-y^2)$					
	Again differentiating with respect to x $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0$					
OR	$v = x^{x}$					
	$\log y = x \log x \Longrightarrow f$	$\frac{dy}{dx} = x^x (1 + \log x)$	(1)		2	
	$\frac{d^2y}{dx^2} = \frac{x^x}{x} + (1 + \log x)$	$\frac{d}{dx}x^{x} = \frac{x^{x}}{x} + (1 + 1)$			2	
	$ = \frac{y}{x} + \frac{1}{y} \frac{dy}{dx} \frac{dy}{dx} \text{ using } ($ $\frac{d^2y}{dx^2} - \frac{y}{x} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 = 0 $				1	
34	$\frac{\frac{d^2y}{dx^2} - \frac{y}{x} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 = 0}{\begin{bmatrix} 1 & -1 & 2\\ 0 & 2 & -3\\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2\\ 9\\ 6 \end{bmatrix}$	$ \begin{bmatrix} 0 & 1 \\ 2 & -3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $			1	

	$ \Rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix} $	1
	Now, given system of equations can be written, in matrix form, as follows	
	$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$	1
		1
	$ \Rightarrow \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix} $	
	$\implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$	
	$\begin{bmatrix} x \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 + 0 + 2 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix}$	1
	$\implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 + 0 + 2 \\ 9 + 2 - 6 \\ 6 + 1 - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 3 \end{bmatrix}$	1
	$\Rightarrow x=0, y=5, z=3$	
		1
35	Let Q(a,b,c) be the required image	
	Let $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3} = k$	
	x=k,y=2k+1,z=3k+2	1
	Co-ordinate of M(k,2k+1,3k+2)	1
	Drs of PQ is $(k-1,2k-5,3k-1)$	
	Now1(k-1)+2(2k-5)+3(3k-1)=0	1
	14k-14=0,k=1	
	Co-ordinate of foot M(1,3,5)	1
	$\frac{a+1}{2} = 1$, a=1	1
	$\frac{2}{b+6} = 3,b=0$	
		1
	$\frac{c+3}{2} = 5, c = 7$	1
	The reqd. image is (1,0,7)	1
OR	$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = r$ and $\frac{x-4}{5} = \frac{y-1}{2} = z = s$	1
	Any point on the first line are $(2r+1, 3r+2, 4r+3)$ and any point on the second line	1
	are (5s+4 , 2s+1 ,s)	1
	If the lines intersects for some values of r and s, we must have $2r+1=5s+4$, $3r+2$	1
	= 2s+1 and $4r+3 = s$	1
	Solving first two equations, we have $r = -1$, $s = -1$	1
	As these values satisfies the third equation, so the lines intersects at $(-1, -1, -1)$ Now the equation of the line passing through $(-1, -1, -1)$ and parallel to $z - axis$ are	
	$\frac{x+1}{x+1} = \frac{y+1}{x+1} = \frac{z+1}{x+1}$	
	0 0 1 SECTION-E	1
	SECTION-E	
36	i) Price = Rs (300- $3x$), Quantity = $80 + x$ quintals	1
	ii) Revenue = Quantity × Price = $(80 + x)(300-3x) = 24000 + 60x - 3x^2$ iii) $P'(x) = 60$ fr = $0 \Rightarrow x = 10$ $P''(10) < 0$ for $x = 10$	1
	iii) $R'(x) = 60 - 6x = 0 \Rightarrow x = 10, R''(10) < 0, So x = 10$ OR	2
	Maximum revenue = $R(10) = 24300$	2 2
37		1
10	(i) 90%	
	(ii) 1%	$\frac{1}{2}$
		Δ

	(iii) 99.9% OR 8.3%	2
38	(i) No. of relations from B to $G = 2^{2 \times 3} = 2^6 = 64$	1
	No. of functions from B to $G = 2^3 = 8$	1
	(ii) Let $x \in B$. That means, x is a boy.	1
	Clearly $(x, x) \in R$ for all $x \in B$. Therefore, R is a reflexive relation.	0.5
	Let x, $y \in B$. That means, x and y are boys.	0.0
	If $(x, y) \in R$, then $(y, x) \in R$. Therefore, R is symmetric relation.	
	Let x, y, $z \in B$. That means, x, y and z are boys.	0.5
	If $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$. Therefore, R is transitive relation.	
	Hence, R is an equivalence relation.	1