

**SET - 1** Candidates must write the Set No on the title page of the answer book.

# **SAHODAYA PRE-BOARD EXAMINATION – 2024-25**

# CLASS – X

## **SUB: MATHEMATICS BASIC(241)**

**Time Allowed: 3 hours** 

### Maximum Marks : 80

#### **General Instructions** :

#### Read the following instructions carefully and follow them :

- 1. This question paper contains 38 questions. All questions are compulsory.
- 2. Question paper is divided into FIVE sections SECTION A, B, C, D and E.
- 3. In section A, question number 1 to 18 are multiple choice questions (MCQs) and question number 19 and 20 are Assertion Reason based questions of 1 mark each.
- 4. In section *B*, question number 21 to 25 are very short answer (VSA) type questions of 2 marks each.
- 5. In section C, question number 26 to 31 are short answer (SA) type questions carrying 3 marks each.
- 6. In section *D*, question number 32 to 35 are long answer (LA) type questions carrying 5 marks each.
- 7. In section E, question number 36 to 38 are case-based integrated units of assessment questions carrying 4 marks each. Internal choice is provided in 2 marks question in each case study.
- 8. There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 3 questions in Section E.
- 9. Draw neat figures wherever required. Take  $\pi = 22/7$  wherever required if not stated.
- 10. Use of calculators is **NOT allowed.**



| 3                 | If $\frac{1}{2}$ is a root of the equation $x^2 + kx - \frac{5}{4} = 0$ , then the value of k is                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |           |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|                   | (A) 2                                                                                                                                                                        | (B) -2                                                                                                                                                                                   | $(C)\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D) $\frac{1}{2}$                                                                                                                        |           |  |
| 4                 | If P( $\frac{a}{3}$ , 2) i                                                                                                                                                   | is the mid-point                                                                                                                                                                         | t of line segme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt joining the points $Q(-5, 4)$ and $R(-1, 0)$ ,                                                                                        | 1         |  |
|                   | then value of                                                                                                                                                                | f <i>a</i> is                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |           |  |
|                   | (A) 9                                                                                                                                                                        | (B) 2                                                                                                                                                                                    | (C) – 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) –9                                                                                                                                   |           |  |
| 5                 | In figure, if a                                                                                                                                                              | a circle touches                                                                                                                                                                         | all four sides o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f a quadrilateral PQRS, whose sides are                                                                                                  | 1         |  |
|                   | PQ = 6.5  cm                                                                                                                                                                 | , $QR = 7.3$ cm a                                                                                                                                                                        | and $PS = 4.2$ cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n. Then RS =                                                                                                                             |           |  |
|                   |                                                                                                                                                                              |                                                                                                                                                                                          | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5 cm                                                                                                                                   |           |  |
|                   |                                                                                                                                                                              |                                                                                                                                                                                          | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )>°                                                                                                                                      |           |  |
|                   |                                                                                                                                                                              |                                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1300                                                                                                                                     |           |  |
|                   |                                                                                                                                                                              |                                                                                                                                                                                          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |           |  |
|                   | (A) 4.7 cm                                                                                                                                                                   | (B) 5.3 cm                                                                                                                                                                               | (C) 5 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) 7.3 cm                                                                                                                               |           |  |
| 6                 | In the figure,<br>then the value                                                                                                                                             | , $\Delta ABC \sim \Delta ED$<br>les of CA is:                                                                                                                                           | C, if AB = 4 cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m, ED= 3 cm, CE = $4.2$ cm and CD = $4.8$ cm,                                                                                            | 1         |  |
|                   |                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |           |  |
|                   |                                                                                                                                                                              |                                                                                                                                                                                          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D C                                                                                                                                      |           |  |
|                   | (A)6cm                                                                                                                                                                       | (B) 4.8cm                                                                                                                                                                                | в<br>(C) 5.4cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D C (D) 5.6cm                                                                                                                            |           |  |
| 7                 | (A)6cm<br>If $2 \sin 2\theta =$                                                                                                                                              | (B) 4.8cm $\sqrt{3}$ , such that $0^6$                                                                                                                                                   | $\frac{1}{B}$ (C) 5.4cm (C) 5.4cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c}                                     $                                                                                 | 1         |  |
| 7                 | (A)6cm<br>If $2 \sin 2\theta =$<br>(A) 60°                                                                                                                                   | (B) 4.8cm<br>$\sqrt{3}$ , such that 0°<br>(B) 45°                                                                                                                                        | $\frac{B}{(C) 5.4 cm} = \frac{C}{(C) 5.4 cm} = \frac{C}{(C) 30^{\circ}} = \frac{C}{(C) 30$ | $ \begin{array}{c}                                     $                                                                                 | 1         |  |
| 7                 | (A)6cm<br>If $2 \sin 2\theta =$<br>(A) $60^{\circ}$<br>If $\Delta$ ABC ~<br>is 25 cm, the                                                                                    | (B) 4.8cm<br>$\sqrt{3}$ , such that 0°<br>(B) 45°<br>$\Delta$ DEF such that<br>on the perimeter                                                                                          | B<br>(C) 5.4cm<br>$e^{\circ} < \theta < 90^{\circ}$ , the<br>(C) 30°<br>at AB = 9.1 cm<br>of $\triangle$ ABC is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c}                                     $                                                                                 | 1         |  |
| 7                 | (A)6cm<br>If $2 \sin 2\theta =$<br>(A) $60^{\circ}$<br>If $\Delta$ ABC ~<br>is 25 cm, the<br>(A)36 cm                                                                        | (B) 4.8cm<br>$\sqrt{3}$ , such that 0°<br>(B) 45°<br>$\Delta$ DEF such that<br>on the perimeter<br>(B) 30 cm                                                                             | B<br>(C) 5.4cm<br>$e^{\circ} < \theta < 90^{\circ}$ , the<br>(C) 30°<br>at AB = 9.1 cm<br>of $\triangle$ ABC is<br>(C) 34 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c}                                     $                                                                                 | 1         |  |
| 7 8 9             | (A)6cm<br>If $2 \sin 2\theta =$<br>(A) $60^{\circ}$<br>If $\Delta$ ABC ~<br>is 25 cm, the<br>(A)36 cm<br>If two positi<br>being prime                                        | (B) 4.8cm<br>$\sqrt{3}$ , such that 0°<br>(B) 45°<br>$\Delta$ DEF such that<br>on the perimeter<br>(B) 30 cm<br>we integers p and<br>numbers, then I                                     | B<br>(C) 5.4cm<br>$e^{\circ} < \theta < 90^{\circ}$ , the<br>(C) 30°<br>at AB = 9.1 cm<br>of $\triangle$ ABC is<br>(C) 34 cm<br>and q can be explicitly consistent<br>(C) q constant of the explicit of the explici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D) 5.6cm<br>(D) 5.6cm<br>(D) 15°<br>(D) 15°<br>and DE = 6.5 cm. If the perimeter of $\Delta$ DEF<br>(D) 35 cm<br>(D) 35 cm<br>(D) 35 cm | 1 1 1     |  |
| 7 8 9             | (A)6cm<br>If $2 \sin 2\theta =$<br>(A) $60^{\circ}$<br>If $\Delta$ ABC ~<br>is 25 cm, the<br>(A)36 cm<br>If two positi<br>being prime<br>(A) ab                              | (B) 4.8cm<br>$\sqrt{3}$ , such that 0°<br>(B) 45°<br>$\Delta$ DEF such that<br>on the perimeter<br>(B) 30 cm<br>we integers p and<br>numbers, then I<br>(B) $a^2 b^2$                    | B<br>(C) 5.4cm<br>$e^{\circ} < \theta < 90^{\circ}$ , the<br>(C) 30°<br>at AB = 9.1 cm<br>of $\triangle$ ABC is<br>(C) 34 cm<br>and q can be ex<br>LCM (p, q) is e<br>(C) $a^{3}b^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c}                                     $                                                                                 | 1 1 1     |  |
| 7<br>8<br>9<br>10 | (A)6cm<br>If $2 \sin 2\theta =$<br>(A) $60^{\circ}$<br>If $\Delta$ ABC ~<br>is 25 cm, the<br>(A)36 cm<br>If two positi<br>being prime<br>(A) ab<br>The $21^{\text{st}}$ term | (B) 4.8cm<br>$\sqrt{3}$ , such that 0°<br>(B) 45°<br>$\Delta$ DEF such that<br>an the perimeter<br>(B) 30 cm<br>we integers p an<br>numbers, then I<br>(B) $a^2 b^2$<br>n of the A.P. wh | B<br>(C) 5.4cm<br>$e^{0} < \theta < 90^{\circ}$ , the<br>(C) 30°<br>at AB = 9.1 cm<br>of $\Delta$ ABC is<br>(C) 34 cm<br>and q can be ex-<br>LCM (p, q) is e<br>(C) a <sup>3</sup> b <sup>2</sup><br>tose first two te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c}                                     $                                                                                 | 1 1 1 1 1 |  |

| 11 | In the figure $\angle ACB = \angle CDA$ , $AC = 8$ cm, $AD = 3$ cm, then BD is                                                                               |                                 |                              |                                               |   |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|-----------------------------------------------|---|--|--|
|    | (A) $\frac{22}{3}$ cm                                                                                                                                        |                                 | $(B)\frac{26}{3}$ cm         |                                               |   |  |  |
|    | $(C)\frac{55}{3} \text{ cm}$                                                                                                                                 |                                 | $(D)\frac{64}{3} \text{ cm}$ | A D B                                         |   |  |  |
| 12 | In the adjoining figure, TP and TQ are the two tangents to a circle with centre O.                                                                           |                                 |                              |                                               |   |  |  |
|    | If $\angle POQ = 1$                                                                                                                                          | 20°, then $\angle P$            | TQ is                        |                                               |   |  |  |
|    | $(\Lambda)$ 80 <sup>0</sup>                                                                                                                                  | (B) $60^{0}$                    | $(C) 70^{0}$                 | $(\mathbf{D}) 120^{0}$                        |   |  |  |
| 12 | (A) 00                                                                                                                                                       | (D) 00                          | 450 450 11                   |                                               |   |  |  |
| 13 | If $\tan^2 45^\circ - c$                                                                                                                                     | $\cos^2 30^0 = x \sin^2 x$      | $-1^{-1}$                    | nen x = 1                                     | I |  |  |
|    | (A) 2                                                                                                                                                        | (B) –2                          | (C) $\frac{1}{2}$            | (D) $\frac{1}{2}$                             |   |  |  |
| 14 | If a sphere is of the sphere                                                                                                                                 | inscribed in a is               | cube, then the               | ratio of the volume of the cube to the volume | 1 |  |  |
|    | (A) 6 : π                                                                                                                                                    | (B) π: 6                        | (C) π: 4                     | (D) 4 : π                                     |   |  |  |
| 15 | If a die is thro                                                                                                                                             | own once, the                   | n the probabilit             | y of getting a number less than 7 is          | 1 |  |  |
|    | $(A)\frac{5}{6}$                                                                                                                                             | (B) 1                           | $(C)\frac{1}{6}$             | (D) 0                                         |   |  |  |
| 16 | If 2 is a root o                                                                                                                                             | of the equation                 | $x^2 + bx + 12 =$            | = 0 and the equation $x^2 + bx + q = 0$ has   | 1 |  |  |
|    | equal roots, th                                                                                                                                              | nen q =                         |                              |                                               |   |  |  |
|    | (A) 8                                                                                                                                                        | (B) –8                          | (C) 16                       | (D) –16                                       |   |  |  |
| 17 | If the mean ar                                                                                                                                               | nd median of                    | a data are 10 an             | d 11 respectively, then mode of the data is   | 1 |  |  |
|    | (A) 12                                                                                                                                                       | (B) 8                           | (C) 20                       | (D) 13                                        |   |  |  |
| 18 | The pair of ec                                                                                                                                               | x = a                           | and $y = b$ grap             | hically represents lines which are            | 1 |  |  |
|    | (A) parallel                                                                                                                                                 |                                 | (B) interse                  | ecting at (b, a)                              |   |  |  |
|    | (C) coinciden                                                                                                                                                | t                               | (D) intersecting at (a, b)   |                                               |   |  |  |
|    | DIRECTION: In Q. No. 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Select the correct option from the following options: |                                 |                              |                                               |   |  |  |
|    | (A) Both assertion (A) and reason (R) are true and reason (R) is the correct                                                                                 |                                 |                              |                                               |   |  |  |
|    | explanation o                                                                                                                                                | f assertion (A                  | )                            |                                               |   |  |  |
|    | (B) Both asse                                                                                                                                                | rtion (A) and<br>f assertion (A | reason (R) are 1             | true and reason (R) is not the correct        |   |  |  |
|    | (C) Assertion                                                                                                                                                | (A) is true bu                  | t reason (R) is              | false.                                        |   |  |  |
|    | (D) Assertion                                                                                                                                                | (A) is false b                  | ut reason (R) is             | true.                                         |   |  |  |
| 19 | Assertion (A)                                                                                                                                                | ): The $n^{\text{th}}$ term     | n of the sequence            | $e - 8, -4, 0, 4, \dots$ is $(4n - 12)$       | 1 |  |  |
|    | <b>Reason (R)</b> : The <i>n</i> <sup>th</sup> term of an AP is determined by $a_n = a + (n - 1) d$ .                                                        |                                 |                              |                                               |   |  |  |

| 20 | Assertion (A): If product of two numbers is 5780 and their HCF is 17, then their LCM is 340.                                          |                                                                                                                                               |                              |                        |                     |                                 |                              | A 1 |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|---------------------|---------------------------------|------------------------------|-----|
|    | <b>Reason (R)</b> : HCF is always a factor of LCM                                                                                     |                                                                                                                                               |                              |                        |                     |                                 |                              |     |
|    | <b>SECTION B</b><br>Q. No. 21 to 25 are Very Short Answer Questions of 2 marks each.                                                  |                                                                                                                                               |                              |                        |                     |                                 |                              |     |
| 21 | (A) Show that the points $(-1, -1)$ , $(2,3)$ and $(8, 11)$ are collinear.                                                            |                                                                                                                                               |                              |                        |                     |                                 |                              | 2   |
|    | OR                                                                                                                                    |                                                                                                                                               |                              |                        |                     |                                 |                              |     |
|    | (B) Find a point on                                                                                                                   | the x-axis                                                                                                                                    | which is eq                  | uidistant fr           | om the poir         | $\frac{1}{2}$ 1 $\frac{1}{2}$ 1 | $\frac{1}{2}$ and $(2, 5)$ . |     |
| 22 | (A) The length of a tangent from a point at a distance 25 cm from the centre of the circle is 24 cm, find the diameter of the circle. |                                                                                                                                               |                              |                        |                     |                                 |                              | e 2 |
|    | (B) Two concentric<br>the larger circle whi                                                                                           | circles ar<br>ch touches                                                                                                                      | e of radii 5<br>s the smalle | cm and 3<br>or circle. | cm. Find th         | ne length o                     | f the chord o                | of  |
| 23 | The first term of an                                                                                                                  | A.P. is –7                                                                                                                                    | and the con                  | nmon diffe             | rence 5. Fin        | nd its 18 <sup>th</sup> to      | erm.                         | 2   |
| 24 | If $\tan \theta = \frac{3}{2}$ , evaluate                                                                                             | 2                                                                                                                                             |                              |                        |                     |                                 |                              | 2   |
|    | $(1 + \sin\theta)(1 - \sin\theta)$                                                                                                    | inθ)                                                                                                                                          |                              |                        |                     |                                 |                              |     |
|    | $(1 + \cos\theta)(1 - \cos\theta)$                                                                                                    | osθ)                                                                                                                                          |                              |                        |                     |                                 |                              |     |
| 25 | The following table<br>during a year in a pa                                                                                          | e shows th<br>articular he                                                                                                                    | ne age distr<br>ospital.     | ibution of             | cases of a          | certain dis                     | ease admitte                 | d 2 |
|    | Age (in years)                                                                                                                        | 5-15                                                                                                                                          | 15-25                        | 25-35                  | 35-45               | 45-55                           | 55-65                        |     |
|    | No. Of cases                                                                                                                          | 6                                                                                                                                             | 11                           | 21                     | 23                  | 14                              | 5                            |     |
|    | Find the modal age                                                                                                                    | of the abo                                                                                                                                    | ve data.                     |                        |                     |                                 |                              |     |
|    | 0 No 26 to 31 or                                                                                                                      | a Shaut                                                                                                                                       | SEC                          | CTION C                | of 2 moul           | a aaab                          |                              |     |
| 20 | Q. No. 20 to 31 al                                                                                                                    | re Snort                                                                                                                                      | Answer Q                     | Zuestions              |                     |                                 | 1                            | 2   |
| 20 | Prove that $3 + 5\sqrt{2}$                                                                                                            | s an irrati                                                                                                                                   | onal numbe                   | r, given tha           | at $\sqrt{2}$ is an | irrational n                    | umber.                       | 3   |
| 27 | Find the ratio in w and $(-1, 2)$ . Also find                                                                                         | Find the ratio in which the y-axis divides the line segment joining the points $(4, -5)$ and $(-1, 2)$ . Also find the point of intersection. |                              |                        |                     |                                 |                              |     |
| 28 | (A) Prove that :                                                                                                                      |                                                                                                                                               |                              |                        |                     |                                 |                              | 3   |
|    | $\frac{1+\sin\theta}{1+}$                                                                                                             | $-\sin\theta =$                                                                                                                               | 2sec A                       |                        |                     |                                 |                              |     |
|    | $\sqrt{1-\sin\theta}$ $\sqrt{1-\sin\theta}$                                                                                           | ⊦ sinθ                                                                                                                                        | 2000 0                       | OD                     |                     |                                 |                              |     |
|    | (B) Prove that ·                                                                                                                      |                                                                                                                                               |                              | OK                     |                     |                                 |                              |     |
|    | $\sin\theta - 2\sin^3\theta$ _ +                                                                                                      | nρ                                                                                                                                            |                              |                        |                     |                                 |                              |     |
|    | $\frac{1}{2\cos^3\theta - \cos\theta} = ta$                                                                                           | 111 <b>D</b>                                                                                                                                  |                              |                        |                     |                                 |                              |     |

| 29 | Find the median for the following distribution :                                                                                                                                                                                                                                                                                                                                                     |                                   |                                    |                                      |                             |                | 3          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------|-----------------------------|----------------|------------|
|    | Class<br>interval                                                                                                                                                                                                                                                                                                                                                                                    | 0-10                              | 10-20                              | 20-30                                | 30-40                       | 40-50          |            |
|    | Frequency                                                                                                                                                                                                                                                                                                                                                                                            | 2                                 | 12                                 | 22                                   | 8                           | 6              |            |
| 30 | (A) Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.<br>OR                                                                                                                                                                                                                                                             |                                   |                                    |                                      |                             |                | d 3        |
|    | (B) In the figure given below, two tangents $TP$ and $TQ$ are drawn to the circle with                                                                                                                                                                                                                                                                                                               |                                   |                                    |                                      |                             |                |            |
|    | centre O from a                                                                                                                                                                                                                                                                                                                                                                                      | n external poi                    | nt T. Prove tha                    | $t \angle PTQ = 2 \angle C$          | OPQ.                        |                |            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                    |                                      |                             |                |            |
| 31 | In a two digit r<br>number is decre                                                                                                                                                                                                                                                                                                                                                                  | number, the te<br>eased by 54, th | n's digit numl<br>e digits are rev | per is three tin<br>versed. Find the | nes the unit's<br>e number. | digit. When th | e <b>3</b> |
|    |                                                                                                                                                                                                                                                                                                                                                                                                      | <b>-</b> T                        | SECT                               | ION D                                |                             |                |            |
| 32 | Q. No. 32 to 35 are Long Answer Questions of 5 marks each.         (A) An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11km/h more than that of the passenger train, find the average speed of the two trains. |                                   |                                    |                                      |                             |                | n 5<br>.t  |
|    | (B) Two pipes running together can fill a cistern in $3\frac{1}{13}$ minutes. If one pipe takes 3 minutes more than the other to fill it, find the time in which each pipe would fill the cisterm                                                                                                                                                                                                    |                                   |                                    |                                      |                             |                | e          |
| 33 | (A) State and pr                                                                                                                                                                                                                                                                                                                                                                                     | ove Basic Pro                     | portionality T                     | neorem.                              |                             |                | 5          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | 0                                  | R                                    |                             |                |            |
|    | (B) Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of $\Delta$ PQR. Show that $\Delta$ ABC ~ $\Delta$ PQR.                                                                                                                                                                                                                           |                                   |                                    |                                      |                             |                | c          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                    |                                      |                             |                |            |
| 34 | In a circle of radius 21cm, an arc subtends an angle of $60^{\circ}$ at the centre (use $\sqrt{3} = 1.73$ ).<br>Find<br>i. The length of the arc<br>ii. Area of the minor sector formed by the arc<br>iii. Area of the minor segment<br>iv. Area of the major segment                                                                                                                                |                                   |                                    |                                      |                             |                | . 5        |

| 35 | A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is $60^{\circ}$ and from the same point the angle of elevation of the top of the pedestal is $45^{\circ}$ . Find the height of the pedestal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|
|    | SECTION E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |  |
|    | Q. No. 36 to 38 are Case-Based Questions of 4 marks each.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |  |
| 36 | Raghav and his family went for vacation to Rajasthan. They had a stay in tent for a night. Raghav found that the tent in which they had stayed is in the form of a cone surmounted on a cylinder. The total height of the tent is 35 m. Diameter of the base is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |  |
|    | 56 m and height of the cylindrical part is 14 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |  |  |  |
|    | Use the above information to answer the questions that follow:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |  |  |  |  |
|    | <ul> <li>(i) How many persons can be accommodated in the tent, if each person needs 17.6 m<sup>2</sup> of floor area?</li> <li>(ii) Find the Curved Surface Area of conical part of the tent of tent of the tent of ten</li></ul> | 1 |  |  |  |  |  |  |  |
|    | the tent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |  |  |  |  |  |  |  |
|    | (111) (a) How much canvas is needed to make the tent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |  |  |  |  |  |  |  |
|    | (b) Find the volume of air present inside the tent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 |  |  |  |  |  |  |  |
| 37 | Rahul and Ravi planned to play Business (board game) in which they were supposed to use two dice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |  |
|    | Based on the above information, answer the following questions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |  |
|    | (i) Ravi got first chance to roll the dice.What is the probability that he got the sum of the two numbers appearing on the top face of the dice is 8?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |  |  |  |  |  |  |  |
|    | (ii) Rahul got next chance. What is the probability that he got same number on both the dice?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |  |  |  |
|    | (iii) (A) Now it was Ravi's turn. He rolled the dice. What is the probability that he got                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |  |
|    | the sum of the two numbers appearing on the top face of the dice is less than or equal to 12 ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |  |  |  |  |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |  |  |  |  |
|    | (B) What is the probability that Rahul got the product of the two numbers is 12?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |  |  |  |



