SAHODAYA PRE-BOARD EXAMINATION, 2024-25 CLASS: X

SUBJECT: MATHEMATICS (STANDARD-041)

MARKING SCHEME (SET-1)

Q. NO	VALUE POINTS	BIT MARK	TOTAL		
1	(B) $x^2 - 6x + 7$	1	1		
2	(D) -9	1	1		
3	(C) 50°	1	1		
4	(D) 8	1	1		
5	(B) 2 <i>r</i> cm	1	1		
6	$(A)\frac{1}{2}$	1	1		
7	(A) 28°	1	1		
8	(C) 7	1	1		
9	(C) 30	1	1		
10	(D) 20 cm	1	1		
11	(B) 28	1	1		
12	$(B)\frac{1}{2}$	1	1		
13	(C) $40 cm^2$	1	1		
14	$(A)\frac{9}{13}$	1	1		
15	(B) 5	1	1		
16	(B) 12	1	1		
17	(B) $(0,-1)$	1	1		
18	(B) 14	1	1		
19	(D) A is false but R is true.	1	1		
20	(A) Both A and R are true and R is the correct explanation of A .	1	1		
SECTION-B (This section comprises of Very Short Answer (VSA) type questions of 2 marks each)					
21	Let the lengths of the two pieces be 3x and 4x respectively.				
	Then, $3x + 4x = 140$				
	7x = 140,	1	2		
	x = 20	1	2		

	So, the the lengths of the two pieces are 60 cm and 80cm.		
	SO, the maximum length of the measuring stick = HCF of (60,80)=	1	
	20cm		
	OR		
	Since, $40 = 5 \times 2^3$,		
	$42=2\times3\times7,$ $45=3\times3\times5,$	1	
	LCM=2520cm		
	The minimum distance is 2520cm	1	
22	No. of possible outcomes=50	1	
	Multiple of 3 or 5 = (3,5,6,9,10,12,15,18,20,21,24,25,27,30,33,35,36,39,40,42,45,48,50)		
	No of favourable outcomes $= 23$	1	
	Probability = $\frac{23}{50}$		2
	OR	1	2
	Possible out comes= 8	1	
	Total no of favourable outcomes= 7	1	
22	Required probability= $\frac{7}{8}$		
23	$\{(\sqrt{3}/2)^3 \times \sqrt{3}\} - \{2 \times (\sqrt{2})^2\} + \{6 \times 1/2 \times 1\}$	1	2
	=9/8-4+3	1	<u> </u>
	=9/8-1=1/8		
24	Let the required ratio be k : 1		
	By section formula		
	$(k \times 6 + 1 \times 2, k \times (-3) + 1 \times 3)$		
	$\left(\frac{k\times 6+1\times 2}{k+1}, \frac{k\times (-3)+1\times 3}{k+1}\right) = (4,m)$	1	
	k=1,therefore the ratio is 1:1	1	2
	m=0	1	2
25	If $P(x, y)$ is mid point of A (3,4) and B (k,6) then we have		
	$\frac{3+k}{2} = x$ and $y = \frac{4+6}{2} = \frac{10}{2} = 5$	1	
	Substituting above value in $x + y - 10 = 0$ we have		
	$\frac{3+k}{2} + 5 - 10 = 0$		2
	$\frac{3+k}{2} = 5$		
	$3 + k = 10 \Rightarrow k = 10 - 3 = 7$	1	
			i

	SECTION-C (This section comprises of Short Answer type questions (SA) of 3 marks each)				
26	Fig, given, to prove and construction	1			
	For Correct proof	2			
	OR		3		
	D 2, M C 4 1 5 6 B				
	$\angle 1 = \angle 6$ (Alternate interior angles)				
	$\angle 2 = \angle 3$ (Vertically opposite angles)				
	DM = MC (M is the mid-point of CD)				
	$\Delta EMD \cong \Delta BMC$	1			
	So, $DE = BC$ (CPCT)				
	Also, AD = BC (Opposite sides of a parallelogram)				
	\Rightarrow AE = AD + DE = 2BC				
	Now, $\angle 1 = \angle 6$ and $\angle 4 = \angle 5$	1			
	ΔELA~Δ BLC	1			
	$\Rightarrow \frac{EL}{BL} = \frac{EA}{BC}$				
	$\Rightarrow \frac{EL}{BL} = \frac{2BC}{BC} = 2$				
	$\Rightarrow EL = 2BL$	1			
27	Let P be the pole to be erected and A, B be the opposite fixed gates.				
21	Given, $PA - PB = 7$				
	Let $PA = a$, $PB = b$				
	Hence $a - b = 7$				
	$\Rightarrow a = 7 + b(1)$				
		1	2		
	In right Δ PAB,		3		

	$AB^2 = AP^2 + BP^2$		
	$13^2 = a^2 + b^2$		
	$169 = (7+b)^2 + b^2$	1	
	169=49+14b+2b ²	1	
	Hence b=5 or -12		
	Therefore, $b=5 \Rightarrow a=7+5=12$		
	Hence, PA=12m and PB=5m	1	
28	$a=1, \qquad b=-p, \qquad c=-p-c$ $\alpha+\beta=p, \alpha\beta=-p-c$ LHS $(\alpha+1)(\beta+1)$ $\alpha\beta+(\alpha+\beta)+1$	1	3
	-p-c+p+1		
	= 1 - c RHS	1	
29	LHS: $\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1}$		3
	Dividing both numerator and denominator by $cos\theta$ $= \frac{\tan\theta - 1 + sec\theta}{\tan\theta + 1 - sec\theta}$	0.5	
	$\frac{\tan\theta + \sec\theta - (\sec^2\theta - \tan^2\theta)}{\tan\theta + 1 - \sec\theta}$	0.5	
	$=\frac{(sec\theta + tan\theta)(1 + tan\theta - sec\theta)}{tan\theta + 1 - sec\theta}$	1	
	$= \sec\theta + \tan\theta$ $= \frac{1}{(\sec\theta - \tan\theta)}$	0.5	
	(Seco tano)	0.5	
30	$P \underbrace{\begin{array}{c} O_1 \\ O_2 \\ 120^0 \end{array}}_{Q} \underbrace{\begin{array}{c} O_2 \\ 40^0 \text{ 21 cm} \end{array}}_{A}$		3
	Let the lengths of the corresponding arc be l_1 and l_2 Area of the sector with central angle O_1	1	

		_	
	$=\frac{120}{360} \times \frac{22}{7} \times 49 = 154/3 \text{ cm}^2$		
	and area of the sector with central angle $O_2 = \frac{40}{360} \times \frac{22}{7} \times 21 \times 21$	1	
	$=154 \text{ cm}^2$		
	Now, corresponding arc length of the sector PO ₁ QP		
	$=\frac{120}{360} \times 2\pi r = 44/3cm$		
	Now, corresponding arc length of the sector AO ₂ BA	1	
	$=\frac{40}{360}\times 2\pi r = 44/3cm$		
	Hence, we observe that arc lengths of two sectors of two different circles may be equal but their area need not be equal.		
	OR		
	$Time = 36 min = \frac{36}{60} hrs$		
	Central angle $(\theta) = 30 \times \frac{36}{60} = 18^{\circ}$	1	
	Finding the correct area = $\frac{\theta}{360}\pi r^2 = 5.66 cm^2$	2	
31	Let $2 - 3\sqrt{5}$ is rational		3
		1/2	
	$2 - 3\sqrt{5} = \frac{p}{q}$, p and q are co prime, $q \neq 0$	_,_	
	$\sqrt{5} = \frac{2q - p}{3q}$		
	$\Rightarrow \sqrt{5}$ is rational	1.5	
	this cointradict the fact that $\sqrt{5}$ is given irrational		
	hence $2 - 3\sqrt{5}$ is irrational		
		1	
	SECTION D		
	(This section comprises of Long Answer (LA) type questions of 5 m	arks each)	
32	For correct tabulation and graph	3	5
	1 of correct modification and Stupin	$\begin{vmatrix} 3 \\ 1 \end{vmatrix}$	
	finding area $\frac{1}{2} \times 4 \times 4 = 0$ as well	1	
	finding area = $\frac{1}{2} \times 4 \times 4 = 8$ sq. unit	1	
		1+1	
	OR	2	
	Let the fixed charges be rupees x and	1	
	charges per kilo meter rupees y		
	$x + 10y = 75 \dots (1)$		
	x + 15y = 110(2) Solving for $x = 5$ and $y = 7$		
	Finding correct charges for $35 \text{km} = \text{Rs.} 250$		
•	•	•	

Finding semi-perimeter (S) = $x + 14$ cm Finding area of \triangle ABC by Herons formula = $\sqrt{48x(x + 14)}$ $ar(\triangle ABC) = ar(\triangle AOB) + ar(\triangle BOC) + ar(\triangle AOC)$	1 1 2	
· · · · · · · · · · · · · · · · · · ·		
$an(\Lambda \Lambda DC) = an(\Lambda \Lambda DD) + an(\Lambda DDC) + an(\Lambda \Lambda DC)$,	
$ur(\Delta ABC) = ur(\Delta AOB) + ur(\Delta BOC) + ur(\Delta AOC)$	1	
$\sqrt{48x(x+14)} = \frac{1}{2} \times 4(x+8) + \frac{1}{2} \times 4 \times 14 + \frac{1}{2} \times 4(x+6)$	_	
By solving the value of $x = 7$		
The value of $AB = 15 cm$ and $AC = 13 cm$		
for fig	1	5
In $\triangle ABE$, we have $\tan 30^\circ = h/x$ $\Rightarrow \frac{1}{\sqrt{3}} = h/x$ $\Rightarrow x = h\sqrt{3}(1)$ In $\triangle BDE$, we have $\tan 60^\circ = \frac{120 + h}{x}$ $\Rightarrow \sqrt{3} = \frac{120 + h}{h\sqrt{3}}$ $\Rightarrow 3h = 120 + h$ $\Rightarrow 2h = 120$ $\Rightarrow h = 60 \text{ m}$ Hence, height of cloud above the lake $= 60 + h = 60 + 60 = 120 \text{ m}$	1 1 1	
	$\sqrt{48x(x+14)} = \frac{1}{2} \times 4(x+8) + \frac{1}{2} \times 4 \times 14 + \frac{1}{2} \times 4(x+6)$ By solving the value of $x = 7$ The value of $AB = 15$ cm and $AC = 13$ cm for fig In $\triangle ABE$, we have $\tan 30^{\circ} = h/x$ $\Rightarrow \frac{1}{\sqrt{3}} = h/x$ $\Rightarrow x = h\sqrt{3} \dots (1)$ In $\triangle BDE$, we have $\tan 60^{\circ} = \frac{120 + h}{x}$ $\Rightarrow \sqrt{3} = \frac{120 + h}{h\sqrt{3}}$ $\Rightarrow 3h = 120 + h$ $\Rightarrow 2h = 120$ $\Rightarrow h = 60 \text{ m}$	$\sqrt{48x(x+14)} = \frac{1}{2} \times 4(x+8) + \frac{1}{2} \times 4 \times 14 + \frac{1}{2} \times 4(x+6)$ By solving the value of $x=7$ The value of $AB=15$ cm and $AC=13$ cm for fig In $\triangle ABE$, we have $\tan 30^\circ = h/x$ $\Rightarrow \frac{1}{\sqrt{3}} = h/x$ $\Rightarrow x = h\sqrt{3} \dots (1)$ In $\triangle ABDE$, we have $\tan 60^\circ = \frac{120+h}{x}$ $\Rightarrow \sqrt{3} = \frac{120+h}{h\sqrt{3}}$ $\Rightarrow 3h=120+h$ $\Rightarrow 2h=120$ $\Rightarrow h=60$ m

	T					1
35						5
			1		, 1	
	C.I		iency	c.f		
	0-10		5	5] 1	
	10-20		X	5+x		
	20-30		5	11+x		
	30-40	1	Y	11+x+y		
	40-50 6 17+x+y					
	50-60 5 22+x+y					
	22+2	x+y=40	(1)			
		x + y = 18			1/	
		dian class=3			1/2	
	madi	an= $L + \frac{\frac{N}{2} - \epsilon}{F}$	$\frac{C.F}{L} \vee h$		1/2	
		-			1/2	
		40,cf=11+x,	•		$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
		+y=90			1/2	
	Solvin	$\log eq(1)$ and			72	
		X=8, Y=10)			
	OR					
	C.I	1				
	100-120					
	120-140	10 15	110 130	1100 1950	2	
		10				
	140-160	20	150	3000		
	160-180	22	170	3740		
	180-200	18	190	3420		
	200-220	12	210	2520		
	220-240	13	230	2990		
		110		18720		
	Mean=18720/110=170.18					
	Modal class=160-180					
	Mode= $L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$					
	L=160, $f_1 = 22$, $f_0 = 20$, $f_2 = 18$, $h = 20$					
	Calculating Mode= $166\frac{2}{3}$					
	3					

SECTION E

(This section comprises 3 case-based questions of 4 marks each)

36	(i) $a_2 = 18000$, $a_{10} = 19800$ a + d = 18000 a + 9d = 19800 Finding d=225 and a=17775	1	4
	(ii) $a_7 = a + 6d = 19125$	1	
	(iii) (a) $s_{10} = 187875$	2	
	OR (b) $a_{10} + a_{11} + a_{12} = 19800 + 20025 + 20250$ $= 60075$	2	
37	(i) height of tower=100m	1	
	(ii) length of shadow of Aiov's house 16m	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	
	(iii) (a) length of shadow of Ajay's house=16m OR	2	4
	(b)length of shadow of Bijay's house=8m	2	
38			
	(i) Number of person that can be accommodated is 14	1	
	(ii) CSA of conical part= $3080m^2$	1	
	(iii) (a) canvas needed $=2\pi rh + \pi rl = 5544m^2$ OR	2	4
	(b) volume of tent= $\pi r^2 h + \frac{1}{3}\pi r^2 h = 51744m^3$	2	